LED dance floor, by
 Nick, Kathryn,
 Mark, and Aiden

The inspiration a game floor at Kidzone

\$23,000! OUCH!
I think we can beat that!

$8^{\prime} \times 8^{\prime}$ Dance floor is made of 4 'x4' quarterfloor modules...
... and a 4in border for control electronics and cabling

Each quarter-floor module is 12×12 cells, sized to fit the acrylic we could find. Each cell is $4 \times 4 i n$, minus " 1 in" (before planing) spruce which makes up the cell walls, slotted into each other.
There are pressure-switches in between each 2×2 cells to detect players standing/jumping there (so 12×12 sensors total).

Pressure-switch

Neoprene draft excluder / weatherstripping for "bounce"

Side view of a cell:

Cheap spruce boxing, painted white
Base board, painted white

Boxing - Wood cutting guide

After planing, 1 " $\times 4$ " $\times 8$ ' wood is more like $11 / 16$ " $\times 3$ " $7 / 16 \times 8$ '
So slots for boxing need to be 11/16" wide and 1 " $3 / 4$ deep.
All 4 sides of the 2 'x4' acrylic need proper support.
We're making slightly-fake 2'x2' boxes, so one sheet of acrylic sits over 2 such boxes. We're building the dance-floor in four 4'x4' quarters for a certain amount of portability. Each quarter will hold 2 sheets of 2 'x4' acrylic, with wood doubled where required to support the edges of the acrylic and for symmetry

To my Brit friends, I apologise. Canada pretends to be metric, they use litres, km, kph, etc, but all the tools, acrylic, and wood come in bloody imperial sizes! Grrrr

Main floor assembly - boxing

This is a quarterfloor.

It uses a total of 28 identically-cut pieces of wood, (14 N -S underneath and $14 \mathrm{E}-\mathrm{W}$ slotting into them from above)

2×2 of these units make the entire floor:

Main floor assembly - acrylic

2 sheets of 2'x4' frosted acrylic

The doubled-up verticals are there to nicely support the edges of the acrylic

The doubled-up horizontals are not structural, just there for symmetry (\cdot)

Main floor assembly - right-angles

Right-angles clip the acrylic into place on all 4 edges of each sheet

Dummy tape to look like rightangles, for symmetry

Detailed side view showing right-angles
clipping acrylic into place

LED Dance Floor v1+v2 Wiring

- Our previous Dance Floor design was going to use Piranha ultra-bright RGB LEDs
- We ran 3 wires down each column (R, G, B), one wire across each row (common anode)
- We had a complicated collection of shift-registers to power 1 row whilst grounding the corresponding RGB columns to display the row contents
- Whilst displaying 1 row, we were clocking the next row's contents into the shift registers
- If we displayed each row in quick succession, persistence-of-vision makes us see the entire display [See end of slide deck if you want details]

LED Dance Floor v1+v2 Wiring

- Version 1 had the shift-registers controlled by a parallel port, which was terrible, mostly because modern parallel ports "ain't what they used to be", they buffer up blocks of data, mess with your timing, and try to "negotiate" with a printer (or a dance floor which doesn't know how to negotiate as a printer, and is confused by the extra data)
- Version 2 was very similar except an Arduino microcontroller drove the shift-registers. This worked much better, and also allowed us to code on the Arduino, unplug the laptop, and have the floor run by itself!

Testing 3x3 cells

First Quarter Test! (no LEDs)

Main floor assembly - first quarter!

Problems with v1+2 Wiring

- When we scaled our 3×3-cell test up to a 12×12-cell 4 'x4' quarter-floor, never mind an entire 24×24-cell floor, the huge soldering effort proved impractical
- It was too easy to burn out LEDs if we soldered direct to them, we couldn't find appropriate LED holders, but found we could make our own from chip holders
- 24×24 cells required cutting, breaking, filing, glueing 288 chip holders into 576 LED holders. We didn't complete this!
- These had to be soldered into the floor in-situ, at awkward angles.
- 4 connections per cell, very close to each other, would require over 2300 hand-soldered joints that must be perfect, with no open circuits, and no shorts
- It would have been really hard to track down and fix any shorts due to rows and columns being powered "wrong"

LED Dance Floor v3 Wiring

- ... but thankfully we discovered chains of WS2801 RGB LEDs!
- They are pre-wired with GND, +5 V , clock, and data lines
- A simple serial protocol, easily driven by an Arduino (or similar), can clock 8 bits of R, $8 x G, 8 x B$ into each LED before moving onto the next LED in the chain
- Once you stop clocking for $500 \mu \mathrm{~S}$, all LEDs display their individual 24-bit colour values and you can begin again at the beginning
- The clock/data rate is sufficiently high that we can trivially manage great frame-rates even if we had much bigger dance-floors

LED Dance Floor v3 Wiring

- Our Arduino could clock into (say) 8 chains simultaneously for even higher frame-rates
- ... but we really don't need to. 25 MHz clock-rate could update a million LEDs per second ... or 50,000 LEDs at 20fps
... or 20,000 LEDs at 50 fps
... or our 24×24 LEDs at 950fps - PLENTY!
- These cost more, however, there's almost no soldering, no chip-holders to make, no shiftregisters, resistors, transistors
- We just drop them into the floor and connect them up to the Arduino and to power!
- They are also 24 -bit instead of 3-bit, and brighter due to illuminating ALL LEDs at the same time, not one row at a time / POV

Main floor assembly - WS2801 LEDs

Our LEDs from pcboard.ca come in chains of 50. We should be able to just lay them into the floor, connect them all into one long chain from the Arduino, and add some extra power

WS2801 cabling detail

Our pcboard.ca LEDs are also NOT plastic-coated. This is no concern as we will be hiding them under all that wood and acrylic, it saves us a little \$\$, but also...

Remember those "spare" LEDs?

We could (ab)use the un-coated WS2801 chips / boards for other purposes!

There's no reason why these HAVE to be LEDs, the chips could drain any load, subject to maximum current limitations

Sensor circuitry

Sensor circuitry

The Arduino can actually pull input lines high for you too, so we don't even need these pull-up resistors, just row/column wires, microswitches, diodes, and WS2801 abuse

Microswitch Sensors Detail

Row wires pulled hard low, one at a time, by WS2801s
(under Arduino control)

Column wires (run in/out of page) pulled weakly high by Arduino input, \& sensed when pulled low through μ switch

Diode stops one row wire from pulling other row wires low through 2 closed μ switches, to avoid confusion

Without diodes...

- If row A is being pulled low to sense those μ switches...
- and B is closed, it correctly pulls column C low, however...
- If D and E are also closed, column F is also pulled low through the indicated path
- Incorrectly implying μ switch G is also closed
- The diodes block this behaviour at D
- A row can then pull columns low, but not vice-versa.

Isn't that too much hassle?

This may remind you of the row/column wiring for v1 / v2 which was too impractical? Important differences:

- This is 12×12, not 24×24
- 1 wire per 2 rows, 1 wire per 2 columns, not 1 wire per row and 3 per column
- 3 nicely-spaced solder joints per switch ($12 \times 12 \times 3=432$, not $24 \times 24 \times 4=2304,<20 \%$)
- No fabrication of custom LED-holders
- Can do some (most?) of the soldering outside the floor, not in-situ and at awkward angles.
- Much bigger spacing, much less chance of shorts, much easier to trace shorts, could probably even write Arduino code to detect where!

Some game ideas

(See also http://noseynick.net/leddf/designer/)

Some game ideas

Dot Chase (by Aiden): Dots move around. Chase the dots of your colour, jump on them, they will reappear elsewhere. Player who stomped their own colour in the time limit the most wins. Maybe size handicap for good players?

Music time! (Nick's idea) - jump on the indicated piano keys in time with the music - a bit like "Rock Band" or the newer "Piano Master"

Some game ideas

Multi-Player-Pong! Obvious one really
Fire-brigade, by KJ. Windows in the 4 buildings light up with red/yellow flames. Step on them to put them out

Some game ideas

Ant Attack (by KJ) - ants (possibly singlepixel?) appear out of the hills and crawl around in a spiral to the food on the picnic blanket in the middle (taking some white with them?), and back to their nests. Squish the ants!

Horse jump (by Estelle, for KJ): Players kneel on all fours at one end of the floor. Obstacles come down the screen and you must jump over them

Some game ideas

Dance-off - one player dances, their moves scroll across the board to another player who has to copy them as accurately as possible. Repeat a few times for different players sending to different players. 1-player or 2-pl cooperative DDR-like also possible

Frogger? These frogs and cars made out of small numbers of pixels are tricky! We hope they will look a bit more obvious once they are moving.

Some game ideas

Simon... Seriously, you need me to explain Simon?

Multi-player Simon - same patterns, see who remembers the longest sequence?

Some game ideas

For a more relaxing low－exercise game．．． Checkers／Draughts，anyone？Problem here is the squares are 3×3 and the sensors are 2×2 ．
Chess pieces in 3×3 would be REALLY tricky，but KJ＇s going to give it a try

Instead，use some border space for scoring or something？Squares are now the same size as the sensors，but obviously no detail for chess pieces this small，only Checkers／ Draughts

More game ideas

 http://noseynick.net/leddf/designer/Older slides, Historical / test stuff, feel free to ignore!

LED Dance Floor v1 Wiring

- Our first Dance Floor design was going to use Piranha ultra-bright RGB LEDs.
- We ran 3 wires down each column ($\mathrm{R}, \mathrm{G}, \mathrm{B}$), one wire across each row (common anode)
- We had a complicated collection of shift-registers, transistors, and resistors to power 1 row whilst grounding the corresponding RGB columns to display the row contents.
- Whilst displaying 1 row, we were clocking the next row's contents into the shift registers
- If we display each row in quick succession, persistence-ofvision makes us see the entire display (but at a corresponding loss of brightness!)

Cabling the cells

The row wiring is harder. It would theoretically zigzag around the vertical wood, except that's not fitted yet. It's easier to wrap around nails. It's hard to hammer nails in the narrow slots, but not impossible.

Cabling the cells

Control via 74HC595 shift/latch registers

Fig. 1 Pin configuration.

Column control circuitry

$$
24 \text { Cols x (R+G+B) ... }
$$

Row control circuitry

LED Dance Floor Controllers

- Our first design (v1) tried to use a parallel port to clock and fill the shift registers
- This used to be a common way to control electronics in "the good old days". Parallel ports used to be quite dumb and you could clock any data you wanted out of them
- These days, PC parallel ports (especially USB ones) are much more "intelligent", they "negotiate" with your printer in interesting ways, they buffer the data, they mess with the timing. Great for printers, terrible for dance floors!

LED Dance Floor Controllers

- We fairly quickly switched to a design (v2) which used the same shift registers, but an Arduino microcontroller instead of a parallel port
- This was a great decision, it has about 20 pins which can be inputs or outputs, instead of the Parallel port's 8-ish kinda half-duplex ones
- It also allows us to program games on the Arduino, then remove the laptop/USB and the floor can continue to play, self-contained!

Arduino Signals

Block Diagram

Shift Registers on Vero/Stripboard 둥

TIP32C PNP

Red/Green board,

Sensors Detail

SPICE test circuit (2rows 2cols)

SPICE test circuit (2rows 2cols)

SPICE test circuit (2rows 2cols)

* Column Driver circuitry

* Comp	N1	N2		Value ...
RA	IA	BA		510
RB	IB	BB		510
RA2	LA	CA		150
RB2	LB	CB		150
*Trans	C	B	E	Model etc
QA	CA	BA	0	NPN
QB	CB	BB	0	NPN

SPICE test circuit (2rows 2cols)

SPICE test circuit (2rows 2cols)

* Diode	$\mathrm{N}+$	$\mathrm{N}-$	Model ...
*LEDs			
DA1	L1	LA	LED
DA2	L2	LA	LED
DB1	L1	LB	LED
DB2	L2	LB	LED

* Yes, there's probably better ways to do this with .SUBCKT stuff
* - maybe when I want to simulate the whole 24×24 :-)

First SPICE results

Our input signals.
$0-20 \mu \mathrm{~s}$ we select one column 40-60 we activate one row 120-140 we deactivate the row 140-160 we deselect the column

Our input currents.
There's a reasonably good reason why one current looks positive (sinking) and one looks negative (sourcing).

These currents would certainly not burn out the shift registers, but could probably be reduced. This was just with a "first guess" of $1 \mathrm{k} \Omega$ for the base resistors - not too bad!

First SPICE results

Our input signals.
$0-20 \mu \mathrm{~s}$ we select one column 40-60 we activate one row 120-140 we deactivate the row 140-160 we deselect the column

Our LED currents.
As expected, only 1 of the 4 LEDs in our test circuit is lit.

The current looks high, but l'm pretty sure that's because version 1 of my test circuit used a plain 0.7 V diode model.

I could do with a more accurate LED model with 2.1V-3.2V forward voltage.

First SPICE results

mi - vce\#branch

Our input signals.
$0-20 \mu \mathrm{~s}$ we select one column 40-60 we activate one row 120-140 we deactivate the row 140-160 we deselect the column

Total supply current.
Again, there's a good reason why this counts as being negative.

We're certainly not short-circuiting anywhere though. Looks pretty believable for a first LED dance floor circuit simulation, and my first attempt to use SPICE for nearly 2 decades!

Some game ideas

Idea
Idea

Dance floor made of 4×6 modules...
... and a 4-inch border for control electronics and cabling

Each module is 6×4 cells, sized to fit the cheapest acrylic we could find. Each cell is 4×4 inches, minus " 1 inch" (before planing) spruce which makes up the cell walls, slotted into each other. There are micro-switches in between each set of 2×2 cells to detect players standing/jumping there.

Old 6x4-cell theory

Acrylic, frosted (somehow?)
Draft excluder for "bounce"?
Wiring - recycled Cat5
Piranha ultra bright RGB LED
Cheap spruce boxing, painted white
Base board, painted white

Veroboard

Components

LED —HPHE FLOFi

